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Abstract: Fire has historically played an important role in shaping the structure and composition
of Sonoran semi-desert grassland vegetation. Yet, human use and land management activities
have significantly altered arid grassland ecosystems over the last century, often producing novel
fuel conditions. The variety of continuously updated satellite remote sensing systems provide
opportunities for efficiently mapping combustible fine-fuels and fuel-types (e.g., grass, shrub, or tree
cover) over large landscapes that are helpful for evaluating fire hazard and risk. For this study,
we compared field ceptometer leaf area index (LAI) measurements to conventional means for
estimating fine-fuel biomass on 20, 50 m × 20 m plots and 431, 0.5 m × 0.5 m quadrats on the
Buenos Aires National Wildlife Refuge (BANWR) in southern Arizona. LAI explained 65% of the
variance in fine-fuel biomass using simple linear regression. An additional 19% of variance was
explained from Random Forest regression tree models that included herbaceous plant height and
cover as predictors. Field biomass and vegetation measurements were used to map fine-fuel and
vegetation cover (fuel-type) from plots on BANWR comparing outcomes from multi-date (peak green
and dormant period) Worldview-3 (WV3) and Landsat Operational Land Imager (OLI) imagery.
Fine-fuel biomass predicted from WV3 imagery combined with terrain information from a digital
elevation model explained greater variance using regression tree models (65%) as compared to OLI
models (58%). Vegetation indices developed using red-edge bands as well as modeled bare ground
and herbaceous cover were important to improve WV3 biomass estimates. Land cover classification
for 11 cover categories with high spatial resolution WV3 imagery showed 80% overall accuracy and
highlighted areas dominated by non-native grasses with 87% user’s class accuracy. Mixed native and
non-native grass and shrublands showed 59% accuracy and less common areas dominated by native
grasses on plots showed low class accuracy (23%). Digital data layers from WV3 models showed
a significantly positive relationship (r2 = 0.68, F = 119.2, p < 0.001) between non-native grass cover
(e.g., Eragrostis lehmanniana) and average fine-fuel biomass within refuge fire management units.
Overall, both WV3 and OLI produced similar fine-fuel biomass estimates although WV3 showed
better model performance and helped characterized fine-scale changes in fuel-type and continuity
across the study area.

Keywords: fine-fuel biomass; fuel-type; fire; non-native grass; semi-desert grasslands

1. Introduction

Fuel and fire hazard estimates from remotely sensed data are frequently sought because of the
prevalence of wildland fires in the western US and the need to assess potential fire behavior [1].
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While a great deal of attention has been paid to characterizing forest canopy fuels [2], fewer efforts
have focused on estimating arid grassland fuel conditions [3,4]. For grassland ecosystems, fire rates of
spread and intensity are driven by the amount and continuity of fine-fuels, in addition to fuel moisture,
fire weather conditions, and topography [5]. Fine-fuel biomass (termed ‘fine-fuel’ from here onward)
in semi-desert grasslands principally pertains to the above ground portion of flammable herbaceous
plant material per unit of area (e.g., grasses and forbs), that is important to fire spread and intensity.
Fine-fuels in arid grasslands are increasingly dominated by non-native plants that can increase fuel
loads (herbaceous and woody fuels combined) and continuity, necessitating assessment of hazardous
fuels that may threaten animal habitat, water quality, human infrastructure, and other natural resource
values [6,7].

Fine-fuels and fuel-type (e.g., grass, grass-shrub, tree, woody debris) are principal vegetation
parameters needed to assign fuel model types used as inputs to fire behavior models [8]. Fire behavior
models such as FlamMap, FARSITE, and BEHAVE require fuel model types representative of fuel
conditions to help determine potential fire behavior such as rates of spread, minimum travel time,
and transition from a surface to crown fire [9–12]. Fuel characteristics are frequently obtained from
remote sensing which offers an increasingly diverse set of tools for mapping surface and canopy
fuels [4,13,14].

The recent increase in the number and variety of private and public sector satellite remote sensing
systems provide an enhanced means of estimating grassland fuel parameters. Programs aimed at
increasing commercial remote sensing space activities through the US president’s Commercial Remote
Sensing Space Policy (CRSSP; https://crssp.usgs.gov/) dramatically improve access to high spatial and
temporal resolution imagery [15]. Improved access and flexibility to acquire high spatial resolution
(0.30 m to 5 m pixels) satellite data for a specific area and time interval is particularly important
to US land management agencies that must prioritize fire and fuels monitoring and mitigation
activities. Satellite systems such as WorldView-1:4, GeoEye, and IKONOS, RapidEye, SkySat-1:2,
and PlanetScope provide detailed panchromatic and multispectral imagery at a spatial resolution
previously only captured by airborne systems. Worldview-2 and Worldview-3 are also capable of a
1–4-day revisit time making appropriate timing of image capture more feasible. This is particularly
beneficial in grassland ecosystems which can exhibit strong spatial and temporal differences in plant
productivity in conjunction with precipitation patterns or disturbance [16,17]. WorldView-3 (WV3),
a commercial system, captures spectral reflectance data in the coastal (400–452 nm), blue (448–510 nm),
green (518–586 nm), yellow (590–630 nm), red (632–692 nm), red-edge (706–746 nm), near-infrared1
(772–890 nm) and near infrared2 (866–954 nm) ranges at a 1.24 m pixel size. Landsat Operational Land
Imager (OLI), an open access public system, captures reflectance data in the coastal (430–450 nm),
blue (450–510 nm), green (530–590 nm), red (640–670 nm), near infrared (850–880 nm), shortwave
infrared (1570–1650 nm), shortwave infrared2 (2110–2290 nm), and cirrus (1360–1380 nm) spectral
ranges at a 30 m pixel size (Figure 1). Each sensor provides a 12-bit dynamic range and improved
signal-to-noise radiometric performance over previous 8-bit sensors, important for vegetation
monitoring and above ground biomass estimation [18,19].

Concurrently, the availability of affordable ground-based sensors has also increased. Vegetation
index (VI) values taken from ground-based sensors (e.g., radiometer) such as the normalized difference
vegetation index (NDVI) are capable of generating reliable grassland biomass and fuel moisture
estimates [20]. Relatively low-cost devices offer rapid and automated measurement of spectral
reflectance data and plant parameters such as the photosynthetically active radiation (PAR), NDVI,
photochemical reflectance index (PRI), and leaf area index (LAI). Ground-based sensors are useful
in combination with satellite and other field observations for developing landscape to region-scale
predictions of variables such as above-ground biomass, agricultural yields, CO2 uptake, and water
stress [21]. In particular, LAI, defined here as the amount of leaf surface per unit area of ground,
is highly correlated with plant biomass [22,23]. PAR is the downwelling solar radiation in the 400 nm
to 700 nm spectral region that is the portion of the electromagnetic spectrum used by plants for
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photosynthesis. Therefore, PAR intercepted by plant canopy is measured using in-situ sensors to
estimate canopy structural parameters and calculate LAI [24].

Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 30 

 

 

Figure 1. Operational Land Imager (OLI) and WorldView-3 (WV3) spectral band widths represented 
within the electromagnetic spectrum and locations with higher atmospheric transmittance (grey). 
Each sensor is designed to reduce impacts from atmospheric absorption by O3, H2O, CO2 in the longer 
wavelengths, and scattering in the shorter wavelengths, typically between 400 nm and 700 nm. OLI 
band 9 (1360 nm to 1390 nm) is intended to detect high altitude cloud contamination less visible in 
other spectral bands. 

Concurrently, the availability of affordable ground-based sensors has also increased. Vegetation 
index (VI) values taken from ground-based sensors (e.g., radiometer) such as the normalized 
difference vegetation index (NDVI) are capable of generating reliable grassland biomass and fuel 
moisture estimates [20]. Relatively low-cost devices offer rapid and automated measurement of 
spectral reflectance data and plant parameters such as the photosynthetically active radiation (PAR), 
NDVI, photochemical reflectance index (PRI), and leaf area index (LAI). Ground-based sensors are 
useful in combination with satellite and other field observations for developing landscape to region-
scale predictions of variables such as above-ground biomass, agricultural yields, CO2 uptake, and 
water stress [21]. In particular, LAI, defined here as the amount of leaf surface per unit area of ground, 
is highly correlated with plant biomass [22,23]. PAR is the downwelling solar radiation in the 400 nm 
to 700 nm spectral region that is the portion of the electromagnetic spectrum used by plants for 
photosynthesis. Therefore, PAR intercepted by plant canopy is measured using in-situ sensors to 
estimate canopy structural parameters and calculate LAI [24]. 

The principal objectives of this study were to examine in-situ and remote sensing techniques 
important for accurately mapping semi-desert grassland fuels from a new generation of remote 
sensing systems. To accomplish this, we sought to compare non-destructive LAI estimates with more 
conventional field measurements. Therefore, quadrat-scale measures of clipped above ground 
herbaceous biomass were compared with field-ceptometer (Decagon Devices Accupar LP-80; 
http://www.decagon.com/) PAR measurements used to calculate LAI and model fine-fuels. Plot- and 
quadrat-based vegetation measurements were also used to map fine-fuels from both WV3 and OLI 
satellite data. From previous studies, we anticipated that that VI developed from the WV3 red-edge 
spectral region (706–746 nm) would improve biomass estimates over other VI typically developed 
from OLI or earlier Landsat satellite imagery [18,19]. In addition, we mapped land cover (i.e., fuel-
types) identified from field plots and WV3 imagery to assess VI, spectral bands and cover estimates 
(e.g., herbaceous plant cover vs. percent bare ground) helpful for improving classification accuracy 
and developing fuel inputs needed for defining grassland fuel-types and fire behavior modeling [25]. 

Vegetation indices combine spectral bands to enhance sensitivity to changes in vegetation leaf 
area index, greenness, and biomass [26]. Vegetation indices utilizing the red-edge spectral region that 
is sensitive to shifts in canopy biomass and chlorophyll content have proven important for biomass 

Figure 1. Operational Land Imager (OLI) and WorldView-3 (WV3) spectral band widths represented
within the electromagnetic spectrum and locations with higher atmospheric transmittance (grey).
Each sensor is designed to reduce impacts from atmospheric absorption by O3, H2O, CO2 in the
longer wavelengths, and scattering in the shorter wavelengths, typically between 400 nm and 700 nm.
OLI band 9 (1360 nm to 1390 nm) is intended to detect high altitude cloud contamination less visible in
other spectral bands.

The principal objectives of this study were to examine in-situ and remote sensing techniques
important for accurately mapping semi-desert grassland fuels from a new generation of remote
sensing systems. To accomplish this, we sought to compare non-destructive LAI estimates with
more conventional field measurements. Therefore, quadrat-scale measures of clipped above
ground herbaceous biomass were compared with field-ceptometer (Decagon Devices Accupar LP-80;
http://www.decagon.com/) PAR measurements used to calculate LAI and model fine-fuels. Plot- and
quadrat-based vegetation measurements were also used to map fine-fuels from both WV3 and
OLI satellite data. From previous studies, we anticipated that that VI developed from the WV3
red-edge spectral region (706–746 nm) would improve biomass estimates over other VI typically
developed from OLI or earlier Landsat satellite imagery [18,19]. In addition, we mapped land cover
(i.e., fuel-types) identified from field plots and WV3 imagery to assess VI, spectral bands and cover
estimates (e.g., herbaceous plant cover vs. percent bare ground) helpful for improving classification
accuracy and developing fuel inputs needed for defining grassland fuel-types and fire behavior
modeling [25].

Vegetation indices combine spectral bands to enhance sensitivity to changes in vegetation leaf
area index, greenness, and biomass [26]. Vegetation indices utilizing the red-edge spectral region that
is sensitive to shifts in canopy biomass and chlorophyll content have proven important for biomass
estimation in previous studies [18,19,27]. Likewise, shortwave infrared bands have helped to reduce
soil background effects that can interfere with biomass estimates from remotely sensed data [28,29]
and enhance estimates of senescent vegetation [30]. For this study, we examined VI and other spatial
data that could potentially improve biomass estimation noted from previous studies [18,19,31].

We focused our study on semi-desert grasslands in the southwestern US. Semi-desert grasslands
represent a significant portion of arid landscapes in southern Arizona, New Mexico, Texas,
and northern Mexico. More than 5 million hectares likely exist between the US and Mexico that
continue to play an important role in the region’s economy and ecological diversity [32]. Frequent
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low-intensity fires at 8–10 years intervals were once common and maintained semi-desert grassland
vegetation composition and structure across the Southwest [33]. Fire can also temporarily enhance
soil nutrient environments by volatilizing nitrogen and organic carbon while reducing competition
between woody plants and herbaceous vegetation [34].

Nevertheless, arid grasslands have undergone widespread vegetation changes since
Euro-American settlement beginning in the late 1800s [35]. While it is challenging to estimate historical
conditions, repeat photography, land survey records, and written descriptions suggest that today’s
arrangement and diversity of grasses, woody plants or mixed composition vegetation often differ
strongly from historical grasslands [32,36]. For many areas, land use practices over the last century
such as intensive livestock grazing during alternate periods of drought and wetter phases have
subsequently lead to fire-regime disruption and increase cover by woody species such as Prosopis spp.
(Mesquite) [34,37]. Others have found that a cessation of indigenous utilization of mesquite has also
contributed to its expansion over the last century or more [36,38]. Increased woody plant cover can
thus alter site thermal and moisture environments, herbaceous plant production, and disturbance
regimes [17]. In some cases, these impacts have ultimately led to a long-term conversion of mixed
grass and shrublands to woodland vegetation [39].

The introduction of non-native invasive grasses is also recognized as a primary change agent
affecting semi-desert grassland fuel production. On suitable sites, an increased abundance of highly
competitive non-native grasses has led to reduced plant diversity and increased fine-fuel loads that
can alter fire behavior [40,41]. Non-native and drought tolerant African grasses such as Eragrostis
lehmanniana (Lehmann lovegrass) and Cenchus ciliari (buffelgrass) were initially planted for erosion
control and improved animal forage starting in the 1930s [40,42]. Each of these perennial bunch grasses
has since spread to unplanted areas often following disturbances and drought periods transforming
the amount, composition, and distribution of fine-fuels in semi-desert grasslands [6,43].

We ultimately sought to improve methods for developing digital data layers depicting fine-fuels
and fuel-types that can be used to model potential fire behavior and inform land planning decisions
with respect to vegetation and fire management. Therefore, primary objectives were to (1) develop
effective and rapid non-destructive field sampling methods that can accurately determine fine-fuel
biomass within semi-desert grassland conditions; (2) assess a set of satellite derived spectral
predictors, VI and spatial variables (e.g., terrain and vegetation cover estimates) for mapping fine-fuels;
(3) compare fine-fuel biomass models from WV3 imagery to more conventionally used OLI predictor
variables; and (4) develop and assess image classification of existing vegetation needed for assigning
fuel model types. Comparisons were also made to assess fuel conditions within the study area using
digital fuels data.

2. Materials and Methods

2.1. Study Area

The study area encompasses the 48,000 ha Buenos Aires National Wildlife Refuge (BANWR)
that was established in 1985. BANWR is located in the Altar Valley of southern Arizona boarding
with Mexico that is situated between several small mountain ranges running north and south to the
Mexican border (Figure 2). The refuge was principally established to facilitate recovery of the critically
endangered masked bobwhite quail (Colinus virginianus ridgwayi) within the US and northern portion
of its range [44]. BANWR itself is divided into 85 separate management units, primarily for prescribed
burning purposes, as well as distinct management zones, developed for focusing masked bobwhite
habitat restoration activities in suitable areas. The 9300 ha masked bobwhite management zone covers
priority areas at lower elevation areas and drainage networks in the Altar Valley. An extended masked
bobwhite zone encompasses an additional 8600 ha occupying slightly more upland sites which likely
contained suitable habitat conditions historically.
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Figure 2. Study area on the US Fish and Wildlife Service, Buenos Aires National Wildlife Refuge
in southern Arizona. Plots measured in 2012 and 2013 recorded plant species along point intercept
transects. Destructive biomass measurements took place on a subset of plots (n = 20) and quadrats (n =
431) in 2013 to develop non-destructive fine-fuel biomass models. Plots measured in 2014 and 2015
added non-destructive quadrat measurements to vegetation transects for estimating fine-fuel biomass.
The stippled area shown is the endangered masked bobwhite quail (MBQ) management zone.

Climate is semiarid with low precipitation and humidity and high summer temperatures.
Temperatures range from −11 ◦C in winter to 41 ◦C in summer. Summer and winter temperatures
average 33 ◦C (May–September.) and 18 ◦C (December–February) respectively. Precipitation averages
43 cm annually and is bimodal with approximately 40% occurring during July and August and the
remaining during winter according to the Sasabe, AZ weather station (http://www.wrcc.dri.edu/)
that is located at the extreme southern end of BANWR. Anvil Ranch weather station, 19 km to the
north, shows a much lower annual precipitation (29 cm) indicating an increasing north to south
precipitation gradient. The valley floor is intersected by numerous dry washes that create level to hilly
terrain ranging in elevation from 925 m to 1400 m. Soils are well drained and coarse to moderately fine
textured Aridisols and Mollisols [45].

Prior land use was principally intensive livestock grazing by cattle since the 1880s. Extensive
removal of Prosopis velutina (Velvet mesquite) during the 1970s and early 1980s was used to improve
forage production [46]. Some rangeland seeding treatments were also applied during this period, in the
northern portion of the refuge with a mix of Panicum antidotale, Sorghum halepense, Leptochloa dubia, and
E. lehmanniana primarily in drainage bottoms (unpublished data). Upland areas in the northern portion
of BANWR were also apparently seeded with a mix of Eragrostis chloromelas, Eragrostis intermedia,
E. lemanniana, and L. dubia that covered approximately 7500 ha. Historical patterns of land use and
hydrologic changes have resulted in a mixture of native and non-native vegetation on the BANWR [47].
E. lehmanniana currently dominates most upland sites, in addition to other non-native grasses including
Eragrostis chlormelas and Eragrostis superb. Common native grasses include Boutaloua spp., Sporobolus
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spp., Aristida spp., Bothriochloa barbinodis, and Digitaria californica. Deep soils in drainages and disturbed
bottomlands include Sorghum halepense, Sporobulus spp., Amaranthus palmeri, and Salsola kali. P. velutina
is the dominant tree on BANWR, but other species such as Celtis spp. and Acacia spp. are also common.
Other common woody shrubs and subshrubs include Isocoma tenuisecta, Gutierrezia sarothrae, Caliandra
eriphylla, Acacia spp., Mimosa spp., and Atriplex canecense. The largest plant family is Asteraceae, with a
marked diversity of annual and perennial forbs and subshrubs. Upper elevations between 1200 m and
1800 m areas contain areas of dense shrublands such as Mimosa Dysocarpa and perennial graminoids
giving way to Madrean evergreen woodlands dominated by Quercus oblongifolia, Juniperous deppeana,
and Pinus engelmannii.

Since refuge establishment, prescribed fire has been used as a primary management tool,
in addition to some mechanical treatments to remove P. velutina for improving habitat conditions for
the masked bobwhite and, more recently pronghorn (Antilocarpa americana). A majority of management
units at low elevations in the central portion of the refuge have been burned at least once with several
of them being purposefully burned or burned by wildfires between three and five times in the last
30 years.

2.2. Vegetation Measurements

2.2.1. Plant Cover

Vegetation cover data were collected from 20 m × 50 m rectangular plots on BANWR using
stratified random sampling design during two separate periods. Vegetation plots measured across the
refuge between July and October of 2012 and 2013 (n = 207) were within vegetation strata defined by
dominant life form classes (i.e., trees, shrubs, and herbaceous plants), and three elevation categories
roughly classed as valley bottom, foothills, and Madrean physiographic environments (Figure 2).
On each plot, we measured 6, 20-m point intercept transects spaced 10 m apart recording plant species
and soil substrate at 0.5 m intervals. Species intercepted were recorded in three height classes there
between 0.0.and 0.5 m, 0.5 and 2.0 m, and >2.0 m. Plot locations were also stratified by low, medium
and high productivity categories based on NDVI from a 2011 Landsat Thematic Mapper (TM) image
taken during the peak growing season.

Vegetation plots measured between July and October of 2014 and 2015 (n = 239) used the same
measurement techniques above, but with the addition of fine-fuel quadrats, that were part of a
separate study examining contemporary fire-effects on semi-desert grassland vegetation and masked
bobwhite habitat. As such, we confined plots to the masked bobwhite management zone and extended
management zone in the valley bottom. These plots were stratified based on fire history and local
hill-slope position which can influence soil physical properties and site moisture regime as well as
disturbance characteristics such as fire behavior. Specifically, we used the US Fish and Wildlife Service
Fire Atlas and a record of fire perimeters (polygons) measured between 1985 and 2015 to estimate
fire frequency on BANWR. Perimeter data were converted to a raster in a geographic information
system (GIS) representing the location of fires for each year which was used to calculate the number
of fires occurring within a 30 m grid cell over a 30-year period. Fire frequency was divided into
low (0–2 fires), medium (3–4 fires) and high (≥5 fires) strata. We used the 10 m digital elevation
model (DEM) from the USGS National Elevation Dataset to calculate topographic wetness index
(TWI) values using Taudem v. 5.0 software (http://hydrology.usu.edu/taudem/taudem5/index.html)
executable files in the R statistics package v. 3.1.1 [48]. Three terrain classes were visually defined
as drainage, ridges and steep slopes, and footslope classes using a detailed DEM and hillshade map
developed from 2007 airborne laser altimetry (LiDAR) tiles that were limited to borderland areas
obtained from the USGS Earth Explorer website (https://earthexplorer.usgs.gov/). The R statistics
‘sampling’ package v. 2.8 [49] was used to create an equal number stratified random plots within fire
frequency and terrain classes.

http://hydrology.usu.edu/taudem/taudem5/index.html
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All plot corners were georeferenced in the field with a Trimble GeoXT or Geo7X and
post-processed to differentially correct point locations to within 1m positional accuracy using Trimble
Pathfinder Office v.5.60 [50].

2.2.2. Grassland Fine-Fuels

We used a double sampling approach to measure fine-fuels to develop non-destructive
measurements for more efficient sampling during the 2014 and 2015 field study. Therefore, grassland
fuels were first sampled on n = 20, 20 m × 50 m plots within 24, 0.5 m × 0.5 m quadrats spaced 5 m
apart along 6, 20-m transects. Destructively sampled quadrats were measured during August of 2013,
the month typically at or near the peak of the growing season. All herbaceous plants within quadrats
were clipped to the ground and taken to a lab to be oven dried at between 60 ◦C and 70 ◦C for at
least 48h and weighed to the nearest 10th of a gram. We also recorded the height and percent cover of
grasses, forbs, cacti, and woody plants in each quadrat. Herbaceous plant cover was visually estimated
on quadrats and average canopy height was measured with a metal tape to the nearest centimeter.

Prior to plant measurements and clipping, we used an AccuPAR LP-80 ceptometer to record
leaf area index (LAI) at five locations spaced 10 cm apart inside the quadrat. An external sensor
and the ceptometer were used together to simultaneously measure above and below canopy PAR
(400–700 nm), at a resolution of 1 µmol m−2 s−1 within a range of 0 to 2500 µmol m−2 s−1. Above and
below canopy PAR measurements in addition to sun zenith angle (z), fraction of beam radiation (Fb),
and a leaf distribution parameter (X) set to 1 for desert grasses were used to instantaneously calculate
LAI. The mean LAI value per quadrat was then calculated from the five samples and stored on the
ceptometer control box. Occasionally, shaded quadrat locations or those showing >10% woody plant
cover were relocated to the next 1 m interval along the transect to avoid shading impacts on herbaceous
LAI measurements. Quadrat measures were generally taken on the east side of transects prior to noon
and the west side of transects in the afternoon to avoid observer shadows over quadrats.

We then used 2013 destructive samples to parameterized herbaceous biomass models, detailed
below, that were used to non-destructively estimate herbaceous biomass on plots measured during
years 2014 and 2015 (n = 239). Pending sufficient biomass model performance, all future quadrat
samples used only ceptometer LAI, herbaceous plant canopy height, and visual cover measurements
to estimate fine-fuels with the same procedures detailed above.

2.2.3. Remotely Sensed Data

For developing digital data needed to estimate fine-fuel biomass and fuel-type on BANWR,
we acquired cloud-free Digital Globe WV3 imagery from September (peak green period) and
November (senescence period) of 2015 using the CRSSP Imagery-Derived Requirements (CIDR)
Tool (https://crssp.usgs.gov/). Cloud-free and terrain corrected OLI imagery with a 30 m pixels size
was also acquired from the USGS EarthExplorer website (https://earthexplorer.usgs.gov/) for June
(senescence period) and August (peak green period) of 2015 (Path 36/Row 38). WV3 image data
were orthorectified and resampled to a 10 m pixel size for analyses using ERDAS Imagine v. 15.0 [51].
We converted all image data to surface reflectance with the ENVI v. 5.3 Fast Line-of-Site Atmospheric
Analysis of Hypercubes (FLAASH) module [52].

In addition to WV3 and OLI spectral bands, reflectance data were used to create multiple VI such
as NDVI, soil adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) designed to
improve biomass estimates and land cover classification [26,53]. As bands from each senor-type cover
different spectral ranges, we created a set of VI specific to each sensor. For WV3, we contrasted 27 VI
using band combinations in red, red-edge (RE), and near infrared (NIR) spectral regions (Table 1).
Alternatively, we developed a set of 12 VI using red, NIR, and shortwave infrared bands (SWIR)
from OLI surface reflectance data. VI from each sensor differed in that WV3 had no SWIR band
combinations and OLI had no RE band combinations (Table 1). Therefore, indices such as the Soil
Adjusted Total Vegetation Index (SATVI), Total Vegetation Fractional Index (TVFC), and a standardized
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greenness-to-cover index (GCI) that use SWIR bands were only calculated from OLI images [30,54].
We also used the difference between peak green period and senescence period image dates and VI to
better distinguish fine-fuels in mixed vegetation comprised of grass, shrubs, and trees. A principal
components rotation of the spectral bands for each sensor type was also used as predictor variables
and possible means to reduce data dimensionality.

Table 1. Spectral indices and layers used in creating the biomass and vegetation cover models using
peak-green (leaf-on) and censed (leaf-off) vegetation Worldview-3 and Operational Land Imager
satellite image dates. References supplied provide the general computational form and background
information for each index and topographic variable.

WV3 Indices Spectral Channels/Equations Reference

B4 & B5 (ρband4 − ρband5)/(ρband4 + ρband5) [55]
B7 & B3 (ρband7 − ρband3)/(ρband7 + ρband3) “
B7 & B4 (ρband7 − ρband4)/(ρband7 + ρband4) “
B7 & B5 (ρband7 − ρband5)/(ρband7 + ρband5) “
B7 & B6 (ρband7 − ρband6)/(ρband7 + ρband6) “
B8 & B3 (ρband8 − ρband3)/(ρband7 + ρband3) “
B8 & B4 (ρband8 − ρband4)/(ρband8 + ρband4) “
B8 & B5 (ρband8 − ρband5)/(ρband8 + ρband5) “
B8 & B6 (ρband8 − ρband6)/(ρband8 + ρband6) “

EVI1 1 G ∗ (ρband7 − ρband5)/(ρband7 + C1 ∗ ρband5 + C2 ∗ ρband2 + L) [26]
EVI2 G ∗ (ρband8 − ρband5)/(ρband8 + C1 ∗ ρband5 + C2 ∗ ρband2 + L) “
EVI3 G ∗ (ρband7 − ρband6)/(ρband7 + C1 ∗ ρband6 + C2 ∗ ρband2 + L) “
EVI4 G ∗ (ρband8 − ρband6)/(ρband8 + C1 ∗ ρband6 + C2 ∗ ρband2 + L) “

SAVI1 2 [(ρband7 − ρband5)/(ρband7 + ρband5 + L)] ∗ (1 + L) [56]
SAVI2 [(ρband8 − ρband5)/(ρband8 + ρband5 + L)] ∗ (1 + L) “
SAVI3 [(ρband7 − ρband6)/(ρband7 + ρband6 + L)] ∗ (1 + L) “
SAVI4 [(ρband8 − ρband6)/(ρband8 + ρband6 + L)] ∗ (1 + L) “

SR1 ρband5/ρband7 [57]
SR2 ρband5/ρband8 “
SR3 ρband6/ρband7 “
SR4 ρband6/ρband8 “

NDWI1 (ρband1 − ρband8)/(ρband1 + ρband8) [58]
NDWI2 (ρband2 − ρband8)/(ρband2 + ρband8) “
NDWI3 (ρband1 − ρband7)/(ρband1 + ρband7) “
NDWI4 (ρband2 − ρband7)/(ρband2 + ρband7) ”

PC1 Principal component 1 [59]
PC2 Principal component 2 “

OLI indices
B5 & B4 (ρband5 − ρband4)/(ρband5 + ρband4) [55]
B5 & B3 (ρband5 − ρband3)/(ρband5 + ρband3) “

SAVI 3 (ρband5 − ρband4)/(ρband5 + ρband4) + L ∗ (1 + L) [56]
SATVI (ρband5 − ρband3)/(ρband5 + ρband3 + L) ∗ (1 + L) − ρband7/2 [30]
TVFC SATVI − SATVImin/SATVImax − SATVImin ∗ 100 “
GCI1 4 (B5&B4 − µ/σ) − (TVFC − µ/σ) [54]
GCI2 (B5&B3 − µ/σ) − (TVFC − µ/σ) “
EVI 5 G ∗ (ρband5 − ρband4)/(ρband5 + C1 ∗ ρband4 + C2 ∗ ρband2 + L) [26]
SR ρband4/ρband5 [57]

NDWI1 (ρband3 − ρband5)/(ρband3 + ρband5) [58]
NDWI2 (ρband3 − ρband6)/(ρband3 + ρband6) “
NDWI3 (ρband3 − ρband7)/(ρband3 + ρband7) “

Terrain variables

Topographic Wetness Index ln a
tan b [60]

Topographic Roughness Index µDEM−DEM
rangeDEM [61]

Solar radiation Globaltot = Dirtot + Diftot [62]

Note: 1 C1 = 6.0, C2 = 7.5, L = 1.0, 2 L = 0.5, 3 L = 0.5, 4 µ = VImean, σ = VIstd, 5 C1 = 6.0, C2 = 7.5, L = 1.0.
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2.2.4. Data Analysis

In-Situ Biomass

We used destructively sampled biomass from all effectively sampled quadrats (n = 431) on 20
plots measured in August of 2013 to develop and test predictive biomass models. We evaluated which
variables measured on quadrates were most important to accurately predict herbaceous biomass and
which non-destructive measures could accurately estimate fine-fuel loads. Therefore, Random Forest
regression tree models [63] were used to predict dry weight (g/m2) herbaceous biomass (i.e., grasses
and forbs) from explanatory variables that were LAI, percent cover, and average height for each plant
life-form. Random Forest (RF) classification and regression trees, often used with high-dimensional
data, provided a flexible approach to both estimate fuel parameters on plots and map fuel-types from
remotely sensed data that is described below.

Random Forest is a ‘tree-based’ machine learning method that uses multiple bootstrap samples
of the data with replacement to train classification and regression models [63]. Samples held out
of training, typically one-third, are then used to evaluate model performance using the root mean
squared error (RMSE) and the proportion of variance explained for regression. Overall and percent
class error is used to evaluate classification model accuracy. Performance measures calculated for
model iterations are aggregated at the end of training to assess error. Predictors are also randomly
selected and tried at each node in a tree and iteratively withheld from trees to estimate their level
of importance. Therefore, each variable’s importance is evaluated by assessing model performance
with and without its presence in the model for as many model iterations as requested. Random
variable selection along with bootstrapped error aggregation, known as ‘bagging’, have proven to be
an effective means for identifying the most important variables in the model and assessing model
error [64]. Therefore, an increase in percent mean squared error (MSE) or ‘node purity’ with a variable
left out of a model training at each iteration is a measure of its overall importance.

For this study, we used the ‘caret’ package v. 6.0-76 [65] for classification and regression model
training and recursive feature elimination (RFE) available for R statistical software to develop RF
biomass models. RFE is a backwards variable selection process that progressively eliminates the least
important predictors [66]. For developing final models, an optimized number of predictors were
selected based on the lowest RMSE obtained from 10-fold cross validation. A model tuning algorithm
was also applied to optimize the RF parameter ‘mtry’ which is the number of predictors randomly
selected for each node. An iterative approach was taken by adding a successively greater number
of predictors to each RF node split. The mtry parameter was set in the final RF model by selecting
the number of available predictors at a node that showed the greatest decrease in model error rate.
A final best performing set of predictors and model was ultimately selected for estimating biomass
from non-destructively sampled quadrats on future plots with LAI measurements. Ordinary least
squares (OLS) regression was also used to investigate single variable biomass predictions that could
help to reduce field measurement time.

Remotely Sensed Fine-Fuel Biomass

We used herbaceous biomass measurements only available from 2014 and 2015 plots (n = 239) to
model and map fine-fuel loads with WV3 and OLI imagery. To compare sensor types, we developed
similar sets of spectral bands and VI as predictors as well as those using differing spectral regions
captured by each sensor type (Table 1). To improve predictions we also developed a set of principal
cover data layers likely to help estimate fine-fuel biomass such as the percent cover of bare ground,
woody vegetation (shrubs and trees together), as well as trees and herbaceous plants from all plots
measured between 2012 and 2015 (n = 446). No disturbances had taken place on plots up to the time
that satellite image data was collected and all plots were measured during the principal growing season.
As with quadrat-scale methods described above, we used RF regression tree and RFE model training
techniques to predict fine-fuel biomass from each sensor type and evaluate model performance.



Remote Sens. 2018, 10, 1358 10 of 30

Therefore, the mean value of predictor variables and pixels within plot boundaries were used to
develop model training data using zonal statistics in the ‘raster’ r-package v. 2.5-8 [67]. Plot rectangles
were buffered by 5 m to accommodate OLI 30 m pixels and generate mean plot values for each
predictor. For making cross-sensor comparisons, we used mean spectral values from plots to reduce
potential scale effects from the two sensor types at a 10 m and 30 m pixel size. We used variable
importance metrics to compare each set of predictors anticipating that red-edge bands and difference
VI from leaf-on and leaf-off imagery would improve model accuracy (Table 1). Scatter plots and
modified t-tests [68], that account for spatial correlation among plots, were then used to make statistical
comparisons between WV3 and OLI biomass estimates at plot locations.

Remotely Sensed Vegetation Cover

To map vegetation cover that is the basis for assigning fuel model types [8], we used plant species
data and cover estimates from all 446 plots and WV3 imagery only. Plot data were used to assign classes
following the US National Vegetation Classification System hierarchy (NVC, http://usnvc.org/).
To aid classification, we used Bray–Curtis similarity and the Flexible-beta cluster analysis in the
‘cluster’ v. 2.0.6 r-package [69] to group plots by plant species composition and develop a training data
set for vegetation classification models. We used K-means partitioning with canopy cover data for all
species with >1 occurrence to determine an optimal number of vegetation classes. This resulted in six
principal vegetation classes from plot data (Table 2). Five additional categories for rare or un-sampled
land cover types such as urban development, water bodies, bare ground, and closed canopy tree cover
were identified from 2013 National Agricultural Imagery Program (NAIP) digital aerial photographs
and 2015 WV3 0.5 m panchromatic imagery. Sample locations were visually selected from NAIP and
WV3 imagery to develop land cover classification inputs in addition to plot data.

Table 2. Land cover class descriptions and abbreviations used for mapping fuel-types on Buenos Aires
National Wildlife Refuge (BANWR).

Class name Abbreviation Description

Shadow Sh Image shadows from buildings, topography,
trees and clouds

Tree cover Tr Lower elevation dense tree cover

Upland shrubs Upsh Upper elevation dense shrubs

Urban/developed Ur Roads, buildings and other human infrastructure

Open water Wa Tanks, ponds and perennial waters

Mesquite/native grass/shrub mix Mgrw Mixed mesquite trees, grass and shrubs

Bare ground Ba Rock, soil and other un-vegetated areas

Exotic grass Xgr Primarily Eroagrostis lemanniana

Forb and herblands Fh Dense herbaceous plants and forbs

Native grass Ngr Mainly sparse native grasses

Madrean oak–juniper Oj Upper elevation oak and juniper woodlands

We used plots classified by vegetation type and high-resolution imagery for each land cover class
for developing RF classification models. A tuning algorithm was used to define the optimal number
of predictor variables tried at each node and RFE was used to select an optimal subset of predictors.
We used samples left out of training at each model iteration to estimate ‘out of bag’ (OOB) error that was
averaged over the number of trees requested during model training (n = 2000). Model performance was
assessed using overall classification error and user’s and producer’ accuracy for individual land cover
categories [70]. We assessed variable importance from RF models for principal vegetation categories to
compare and contrast WV3 spectral bands and indices useful for discriminating specific classes.

http://usnvc.org/
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3. Results

3.1. In-Situ Biomass Results

Herbaceous biomass clipped from n = 431 quadrats on 20 plots ranged from 0.0 g/m2 to
185.4 g/m2 and averaged 25.8 g/m2 ± 25.5. Using 10-fold cross validation as our RFE training
control methods for feature selection, six of the 10 variables used for predicting fine-fuel biomass were
selected as optimal using minimum RMSE values (Figure 3). We used the selected optimal predictors
to further tune the number of variables tried at each node for RF models. Two predictors tried were
found to more substantially decrease OOB error and were used in the final RF model with six selected
predictors. The final model resulted in 84% of the variation explained and a root mean squared error
(RMSE) of 0.97 g/m2. From variable importance plots, we found that ceptometer LAI was the most
important predictor variable when compared to all other quadrat-scale predictors. Both percent MSE
and node purity increased similarly with LAI held out of RF models (Figure 4A.B). Other variables
such as total plant cover were highly correlated with LAI (r = 0.87), and subsequently removed from
the final model through backwards elimination. While not a focus for this investigation, multiple
linear regression performed similar to RF using all six square root transformed predictors (r2 = 0.84,
F = 462.3, p < 0.001).

We also assessed simple linear regression models with selected LAI, cover and height variables as
predictors which explained 18% to 40% less variance than RF models, but showed a strong positive
relationship with dry biomass (Figure 5A–D). The final RF model from destructive samples was then
used to predict non-destructively sampled quadrats on all plots measured in 2014 and 2015 which
showed similar average cover (%) and height (cm) estimates to those collected on quadrates in 2013
respectively (xc = 27.6 ± 24.1 vs. xc = 31.9 ± 27.3, xh = 11.7 ± 6.8 vs. xc = 8.5 ± 5.4). Predicted
biomass for non-destructively sampled plots ranged from 51.0 kg/ha to 1671.8 kg/ha and averaged
685.5 ± 327.0 kg/ha that was within the range of values previously reported by Marsett et al. [30] for
Sonoran and Chihuahuan rangelands with a burning and grazing history.
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number of variables selected (red dot) from a 10-fold cross validation analysis. Feature selection was
used to develop the Random Forest biomass models with a reduced set of optimized predictor variables.
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Figure 5. Individual square root transformed variables (A) leaf area index (LAI), (B) total vegetation
cover, (C) grass and forb cover, and (D) average vegetation height selected for predicting oven dried
herbaceous biomass (fine-fuel) that was clipped from quadrats in 2013.

3.2. Remotely Sensed Fine-Fuel Biomass Results

We first derived continuous cover data from vegetation plots and satellite imagery for general
classes of vegetation (herbaceous, woody plants, and trees) and bare ground to add as predictor
variables to spatial models of fine-fuel biomass. These models resulted in four separate data layers
from each sensor type. Random Forest and RFE feature selection models results can be found in Table 3.
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Both models for WV3 and OLI performed similarly in terms of variance explained and RMSE. Feature
selection substantially reduced the number of predictors while increasing variance was explained,
particularly for WV3 herbaceous and bare ground models (Table 3). Important predictor variables
from cover models are further discussed below in conjunction with biomass models for each sensor
type. However, the amount of herbaceous and bare ground cover on a plot was considered important
to estimate fine-fuel biomass. For example, a curvilinear model to predict fine-fuel biomass from the
ratio of herbaceous to bare ground cover on plots explained a significant amount of variation (r2 = 0.64,
p < 0.001, Figure 6). A curvilinear model fit likely resulted from the difference between dense tall
grasses versus short-statured forb dominated areas that differ in the amount of herbaceous biomass
accumulated on site.

Table 3. Random Forest percent cover model results from WV3 and OLI sensors with and without RFE
predictor variable selection.

Sensor Cover Type No. Variables Var. Explained 1 Features Selected Var. Explained 2 RMSE

WV3 Herb 90 42.6 27 49.1 14.8
Woody 90 25.7 30 31.1 10.7

Tree 90 26.2 23 34.7 9.5
Bare ground 90 47.3 21 54.9 9.9

OLI Herb 67 43.6 40 46.1 15.1
Woody 67 37.3 59 37.3 10.0

Tree 67 43.5 61 45.3 8.4
Bare ground 67 42.4 15 45.1 11.0

1 Amount of variance explained from Random Forest models without feature selection; 2 Amount of variance
explained from optimized Random Forest models with feature selection.
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herbaceous to bare ground cover from plot data with a curvilinear fit (solid line) and 95th percentile
confidence intervals (dashed lines).

Therefore, three separate fine-fuel biomass models were developed for each sensor type, first using
spectral predictors, second with spectral and terrain predictors, and lastly a combined model that
included vegetation cover variables. The combined model performed substantially better than either
of the two previous sets of predictors for both sensor types (Table 4). The optimal number of predictor
variables selected with RFE decreased substantially from 37 to 19 for the WV3 model while the amount
of variance explained increased from 51.1% to 65.0% (RMSE = 201.9 kg/ha). Similarly, the number of
OLI model predictors was decreased from 43 to 10 while increasing the variance explained from 47.1%
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to 57.6% (RMSE = 220 kg/ha, Table 4). Further discussion of results considers only comparisons and
model outcomes from the two sensors using all variables combined.

Table 4. Remote sensing based fine-fuel biomass (kg/ha) model results from Random Forest regression
tree models with and without RFE predictor variable selection.

Sensor Predictors 1 No. Variables Var. Explained 2 RMSE Features Selected Var. Explained 3 RMSE

WV3 Spectral 85 47.1 247.7 37 51.1 236.6
Spectral and terrain 90 51.1 231.4 37 56.6 219.4

Spectral, terrain and cover 94 61.9 210.6 14 65.0 201.9
OLI Spectral 59 43.0 257.5 43 47.1 252.0

Spectral and terrain 67 45.5 251.8 64 48.9 246.6
Spectral, terrain and cover 70 54.0 231.2 10 57.6 220.0

1 Three separate WV3 and OLI biomass models were developed using different sets of predictors; 2 Percentage of
variance explained from Random Forest models without feature selection; 3 Amount of variance explained from
optimized Random Forest models with feature selection.

In each case RFE reduced the number of predictor variables used, particularly for OLI which
decreased from a total of 70 possible to 10 while >20 predictors noticeably increased cross-validation
RMSE for both sensor types (Figure 7A,B). Overall, WV3 biomass models performed better than OLI
models with 7.4% greater variance explained and 8.3% lower RMSE. Nevertheless, a modified t-test
comparing WV3 and OLI biomass predictions, which reduces the effect of spatial autocorrelation,
revealed significantly positive correlation (r = 0.85) between model predictions (F = 32.4, DF = 12.0,
p < 0.001). A scatter plot comparing predicted versus observed values from plots was also similar
between the two sensors with an r2 = 0.70 (p < 0.001) and r2 = 0.74 (p < 0.001) for WV3 and OLI
respectively (Figure 8A). In only a small number of cases, WV3 biomass predictions were biased higher
relative to plot values, while OLI predictions were biased lower. A direct comparison of fine-fuel
biomass predictions by each sensor type indicated a strong positive relationship (r2 = 0.73, p < 0.001)
between the two estimates with relatively few plots showing large differences (Figure 8B).
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Figure 7. Biomass model recursive feature elimination (RFE) for (A) WV3 and (B) OLI sensor types
and all predictor variables indicating the optimum number of predictors (red dot) used in each final
Random Forest regression tree model. Selected features were used to develop final Random Forest
biomass models using a reduced set of optimized predictors for each sensor type.
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Figure 8. Scatter plots comparing (A) predicted and observed plot biomass (kg/ha) from field plots
and WV3 (r2 = 0.70, solid line) and OLI (r2 = 0.74, dashed line) models and (B) predicted biomass
(fine-fuel) for plot locations by each sensor type and plot (r2 = 0.73, solid line). The dashed line in (B) is
forced though the origin.

We anticipated that red-edge and SWIR band combinations would be highly important to biomass
predictions. Variable importance plots from each sensor type showed that the amounts of bare ground
and herbaceous cover taken from digital data layers were overwhelmingly the most important variables
for biomass predictions (Figure 9A–D). Improved herbaceous and bare ground cover model performance
was largely driven by Yellow, Red, Red-edge and NIR bands and vegetation indices depending on
available bands from each respective sensor (Figure 10A–D and Figure 11A–D). EVI and SAVI that
contain a soil adjustment factor were among the top 10 variables for herbaceous cover models for both
WV3 and OLI, and OLI bare ground models. For WV3 biomass models the Red, Yellow, and Red-edge
bands were also among the top 10 important predictors as well as vegetation indices developed from
NIR and Red-edge bands from leaf-on and leaf-off imagery. For OLI models, Green, NIR and Coastal
bands were among the top 10 important predictors as well as leaf-on indices such as total vegetation
fractional cover (TVFC) and the soil adjusted total vegetation index (SATVI) that are sensitive to green
and senesced vegetation in semi-desert environments (Figure 9C,D) [30]. Standardized GCI1 and
GCI2 (greenness to cover indices) from leaf-off imagery were also important to OLI biomass models as
they incorporate NDVI, TVFC, and SATVI that likely help increase sensitivity to lower levels of plant
greenness [54]. Other important predictors such as elevation, solar radiation, and the differenced PCA1
band were helpful in reducing data dimensionality for both WV3 and OLI biomass models.
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Figure 9. Variable importance plots for biomass model developed from (A,B) Worldview-3 and
(C,D) Operational Land Imager top 10 satellite image bands, vegetation indices, terrain and vegetation
cover variables. The increase in MSE (%) and node purity with a predictor variable held out of
model training for n = 2000 regression trees was used as an indicator of each variables importance.
Greater importance values suggested which variables had the greatest explanatory power in the model.
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Figure 11. Variable importance plots for bare ground cover developed from (A,B) Worldview-3 and
(C,D) Operational Land Imager top 10 satellite image bands, vegetation indices, terrain and vegetation
cover variables.

We also found that similar variable combinations improved cover model performance
(Figure 11A–D) that, in turn, contributed to comparable and improved biomass predictions from
WV3 and OLI models. Random Forest models for herbaceous and bare ground cover also produced
highly comparable results and predictions consistent with field plot measurements (Figure 12A,B).
Performance measures such as variance explained and RMSE were generally low for WV3 and OLI
models (Table 3), but were consistent with plot measurements used as model inputs (Figure 12A,B).
OLI had a somewhat stronger relationship to field data collected for herbaceous vegetation (r2 = 0.75,
p < 0.001) and bare ground (r2 = 0.72, p < 0.001) than WV3 model predictions (herbaceous r2 = 0.65,
p < 0.001; bare ground r2 = 0.66, p < 0.001).
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(A) Worldview-3 and (B) Operational Land Imagery satellite imagery and field plots.

3.3. Remotely Sensed Land Cover

For land cover classification, we focused on WV3 imagery only to develop classes and fuel-types
compatible with fine-fuel biomass estimated at a 10 m pixel resolution. A model using all predictors
resulted in an overall classification accuracy of 82.7% from validation samples left out of model training.
Models using all sample data to assess OOB error achieved 78.0% accuracy. A total of 67 predictors
were selected out of 101 using RFE to optimize the classifier. Optimized models resulted in 83.1%
accuracy from separate validation samples and 79.6% from OOB error assessment estimated using
n = 2000 classification trees (Table 5A,B). Most low elevation sites were dominated or co-dominated
by the non-native perennial grass Lehmann lovegrass with sparse native grasses such that very few
native plant dominated samples were available for separate model training and validation data sets.
Therefore, 25% of samples randomly selected for independent validation, without replacement, were
not sufficiently representative for determining accuracy of native grass dominated areas (n = 9) or
upland shrub vegetation (n = 4). Because vegetation data were collected from randomly assigned plots
spaced at a minimum distance of 250 m apart, we believed that OOB error estimates better reflected
class accuracy than separate validation data.
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Table 5. Classification error matrices from (A) separate testing and training sample data and (B) all data
bootstrapped error assessment using data left ‘out of bag’ (OOB) at each Random Forest classification
model iteration.

(A) True

Class Ba Xgr Fh Ngr Oj Mgrw Sh Tr Upsh Ur Wa Users acc. (%) Producers acc. (%)

Pr
ed

ic
te

d

Ba 42 0 0 0 0 0 0 1 0 4 0 89.4 95.5
Xgr 0 53 0 1 0 3 0 0 1 0 0 91.4 85.5
Fh 0 1 18 0 0 0 0 1 0 0 0 90.0 72.0

Ngr 1 4 1 2 0 1 0 0 0 0 0 22.2 22.2
Oj 0 0 0 0 11 0 0 0 0 0 0 100.0 78.6

Mgrw 0 4 5 6 0 20 0 4 1 0 0 50.0 83.3
Sh 0 0 0 0 2 0 4 0 0 0 0 66.7 100.0
Tr 0 0 1 0 1 0 0 25 0 0 0 92.6 80.6

Upsh 0 0 0 0 0 0 0 0 2 0 0 100.0 50.0
Ur 1 0 0 0 0 0 0 0 0 27 0 96.4 87.1
Wa 0 0 0 0 0 0 0 0 0 0 12 100.0 100.0

Overall acc. % 83.1

(B) True

Class Ba Xgr Fh Ngr Oj Mgrw Sh Tr Upsh Ur Wa Users acc. (%) Producers acc. (%)

Pr
ed

ic
te

d

Ba 170 0 1 0 0 1 0 0 0 11 0 92.9 89.5
Xgr 0 182 0 8 0 17 0 0 2 0 0 87.1 76.8
Fh 0 0 60 1 0 13 0 3 0 0 0 77.9 80.0

Ngr 0 23 3 15 0 24 0 0 0 0 0 23.1 48.4
Oj 0 1 0 0 41 0 1 0 2 0 0 91.1 91.1

Mgrw 2 24 8 7 0 69 0 7 0 0 0 59.0 50.0
Sh 0 0 0 0 3 0 16 0 0 0 0 84.2 88.9
Tr 1 0 3 0 0 9 1 95 0 2 0 85.6 87.2

Upsh 0 7 0 0 1 5 0 3 9 0 0 36.0 69.2
Ur 16 0 0 0 0 0 0 1 0 117 0 87.3 90.0
Wa 1 0 0 0 0 0 0 0 0 0 54 98.2 100.0

Overall acc. % 79.6

Not surprisingly, predictors with the greatest overall importance for improving class accuracy
were related to elevation, topographic roughness, and wetness indices for distinguishing land cover
types (Figure 13A,B). Many of the cover types occupied dissimilar terrain conditions within the study
area. For example forb and herb dominated sites were typically found within topographic depressions
or flat valley-bottom terrain whereas mixed shrub and herbaceous vegetation were within drainage
areas with greater mesquite cover. Upland shrubs and Madrean oak–juniper forest were primarily on
steep mountain slopes surrounding the Altar Valley. Decreases in Gini were most strongly influenced
by predictors combining green and NIR bands that are sensitive to vegetation differences in chlorophyll
content and leaf pigment (Figure 13B) [71,72]. Indices such as leaf-on NDWI that are sensitive to areas
of increased or decreased moisture were also important, likely helping to distinguish between upland
and low-lying vegetation classes (e.g., within drainage bottoms).
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categories were classified with accuracies ≥84.2% primarily with leaf-on spectral bands and indices 
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Figure 13. Overall Random Forest variable importance for Worldview-3 satellite imagery and land
cover classification showing the first 20 predictors. For land cover classification, variable importance
was measured as the mean decrease in class accuracy and the Gini index of node impurity with each
predictor variable held out of the model over n = 2000 classification trees.

Variable importance for individual classes and predictors was highly varied, however vegetation
indices incorporating NIR, red-edge, and green bands were most important to distinguishing areas
dominated by exotic grasses from other vegetation (Figure 14A). Red-edge and NIR band combinations
from the leaf-off image were likely important as non-native Lehnman lovegrass that often retains some
photosynthetic material during senescent periods for other native grasses [73]. We found that Lehman
lovegrass can comprise as much as 100% cover on our intensively sampled plots (n = 240 intercepts
per 0.10 ha−1 plot), while native grasses were often sparsely distributed. Native grasses were best
distinguished using a combination of yellow and red bands, although class accuracy was low because
of confusion with exotic grasses and mixed grass and shrubland categories (Figure 14B, ≤23.1% user’s
accuracy). We sampled very few plots dominated by native grasses, which were often a minor portion
of the plant composition relative to Lehman lovegrass cover. Therefore, far fewer samples were
allocated to a native grass category for model training which required a greater proportion of native to
non-native grass cover on plots.

Oak–juniper woodlands are primarily evergreen which were largely distinguished from upland
and other shrub vegetation with leaf-off spectral bands (Figure 14D–F). All other land cover categories
were classified with accuracies ≥84.2% primarily with leaf-on spectral bands and indices as most
important to class accuracy (Figure 14G–K). An exception was tree cover that was lower elevation
dense canopy trees within principal drainages, where a combination of leaf-on and leaf-off bands as
well as topographic variables that were important to accuracy (Figure 14G).
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4. Discussion

As greater monetary and human resources become essential to mitigating hazardous fuels and
fire impacts on natural resource and other values; a means to assess fuel conditions and potential fire
behavior is increasingly important [74]. Frequent-fire is historically characteristic of semi-desert and
other arid grasslands in the western US; yet average fire season length and fire size have increased
over the last three decades [75,76]. Historical and contemporary land use; climate-change and fire
management practices can also, in places, increase fine-fuel loads particularly where non-native grass
invasions have become extensive [77–81].

Our findings indicated that recent advances in satellite and in-situ sensors show promise
for improving estimates of fine-fuel conditions at spatial and temporal scales important to land
managers [18,21,27,82]. Overall, non-destructive field measurements and satellite data were effective



Remote Sens. 2018, 10, 1358 23 of 30

for estimating fine-fuel biomass in semi-desert grasslands. We found that in this landscape,
field ceptometer measurements combined with WV3 or OLI image data produced biomass estimates
well within the range of anticipated values for semi-desert grasslands. Biomass values measured on
our plots were closely aligned with the field estimates previously obtained by Marsett et al. [30] from
other semi-desert grassland sites in southern Arizona.

Field ceptometer LAI combined with average herbaceous plant height and cover provided rapid
and accurate field biomass predictions where minimal woody plants (µ < 2%) and cacti (µ < 1%) were
encountered within 0.5 m2 quadrats. Measurements of plant height and canopy cover by life-form
added time to quadrat sampling, but helped explain an additional 10% of the variation in fine-fuel
biomass with RF models. Sharma et al. [20] also found that canopy height measurements improved
grassland biomass predictions on 0.25 m2 quadrats when combined with field spectrometer bands and
NDVI measurements. While other studies have suggested that LAI can, at times, be cumbersome to
measure in grasslands when instrumentation is affected by sky conditions or obstructions near the
ground [30], we found that the ceptometer was simple to calibrate and could be efficiently applied
within quadrats. As most sample sites in our study areas were dominated by herbaceous cover,
systematically selecting quadrat locations and occasionally relocating them to avoid ceptometer
shading was feasible in this study area. Sites with greater woody plant cover or succulents such
as woodlands or Sonoran Desert uplands would likely require other methods to estimate fine-fuel
biomass from field measurements. Overall, LAI was the best predictor of fine-fuel biomass and total
herbaceous plant cover was the second best predictor. In the absence of ceptometer equipment to
measure LAI, quadrat measurements of herbaceous plant cover and height may also work well in
place of destructive methods.

Remotely sensed biomass models from both WV3 and OLI imagery showed similar,
but sufficiently different levels of performance, 65% and 57.6% of variance explained, respectively.
OLI model performance also differed from results reported by Marsett et al. [30], who used single
date Landsat Thematic Mapper (TM) image VI for Sonoran semi-desert grasslands producing biomass
models that explained 77% of the variance. Differences are possibly a result of the larger 90 m × 150 m
plots sizes that were more appropriate to 30 m Landsat pixels, but also could be attributed to a low
number of validation samples obtained (n = 9) to assess model predictions [30]. Our 20 m × 50 m plot
size was designed to fit within specific hillslope categories for assessing soil and other site differences
important for measuring masked bobwhite habitat conditions [83]. Thus, plot dimensions differed
somewhat from the OLI pixel size (30 m × 30 m) and may have impacted biomass model results,
yet final model estimates were highly correlated with WV3 model results (Figure 8A,B). We also
avoided occasional shrubs on quadrats and focused principally on measuring herbaceous plants that
were the primary fraction of fuels important to fire hazard, behavior, and rates of spread [77]. This may
have decreased model performance in areas that occasionally had a greater abundance of woody
sub-shrubs such as Gutierrezia sarothrae that were not included in fine-fuel measurements.

Random forest models used with this study allowed for robust model validation by iteratively
sampling all plot data (n = 239) over 2000 separate regression tree models to generate bootstrapped
error predictions. We considered our assessment an accurate representation of model performance
because plots were randomly assigned to sites with differing fire histories and hillslope conditions
that were spaced ≥250 m apart (Figure 2). Roadside conditions that can affect vegetation productivity
and interfere with sampling (e.g., plots overlapping roadways) were also avoided. WV3 model
performance in our study area was similar to results obtained by Muntanga et al. [18] who used single
image Worldview-2 (WV2) VI for biomass estimates in a grass dominated wetlands of South Africa.
They attained nearly identical r2 (0.79 vs. 0.76) and RMSE (0.438 kg/m2 vs. 0.442 kg/m2) values from
best performing RF models evaluated from calibration and independent validation data held out of
model training. Greater vegetation cover heterogeneity in our study area between grasses, annual
forbs, woody plants, and bare ground may also explain why we found somewhat lower biomass model
performance with similar WV3 imagery. Ramoelo et al. [19] achieved greater model performance
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(r2 ≥ 0.84, RMSE ≤ 105.6 g/m2) from seasonal WV2 imagery and more homogeneous grassland plots
in the Kruger National Park, South Africa.

Our biomass model outcomes differed more strongly with results obtained by Sankey et al. [84]
who found little or no relationship between single date WV2 image VI and herbaceous biomass
measurements on other Sonoran Desert sites. Hot desert locations sampled in their study area were
only occasionally dominated by native and non-native annual grasses and forbs (e.g., Schismus spp. and
Brassica tournefortii) that can form more continuous fuel-bed conditions only during wetter years [85].
Field measurements showed an average of <1 g/m2 and <10% cover on plots suggesting that trace
amounts of herbaceous plant biomass are insufficiently estimated at the spatial and spectral resolution
of WV2 or, by extension, WV3 imagery [84]. In contrast, our plots averaged 68.6 g/m2 biomass and
67% cover by herbaceous plants.

RFE methods used to optimize regression tree models substantially improved model outcomes
while decreasing the number of predictor variables, consistent with Mutanga et al. [18]. In our study
area, estimates of percent bare ground and herbaceous cover were the most important predictors for
both WV3 and OLI models (Table 4). Bare ground predictions for WV3 models were considerably
improved by yellow, red, and red-edge bands, band combinations and contrasting leaf-on and leaf-off
imagery (Figure 11A,B), as SWIR bands for developing conventional soil indices were not available.
Nevertheless, OLI bare ground models incorporating bands and indices such as the Normalized
Difference Soil Index (NDSI) known to improve discrimination between soil, vegetation, and water [86]
showed lower variance explained (Table 3).

More recent studies by Mutanga et al. [18] and Ramoelo et al. [19] found that narrow band
WV2 VI using visible and red edge bands were most important for predicting biomass in more
densely vegetated South African grasslands. Indeed, we found WV3 red-edge VI were among the
most important variables for predicting herbaceous cover that was important to our biomass models.
However, the difference in PCA bands 1 and 2 from leaf-on and leaf-off VW3 imagery, that contained
98% of the cumulative variance among spectral bands, was most important to herbaceous cover
predictions. PCA bands contributed to the lower number of variables selected (n = 27) in contrast to
OLI models that used a greater number of variables (n = 40) and showed lower performance (Table 3).
PCA bands selected from RFE likely helped to reduce the overall number of predictors as well as the
correlation among predictors. In addition, topographic variables were important in predicting both
herbaceous cover and bare ground that have been shown to help explain differences in herbaceous
biomass for grasslands elsewhere [87]. Differences in soil texture, solar radiation, and moisture that
are related to topography are known to drive vegetation productivity, fine-fuel conditions, and fire
occurrence in semi-desert environments [88].

Lastly, we found that land cover data developed from plots and multidate WV3 imagery showed
promise for identifying important fuel-types within the study area that have a different potential for
carrying a fire. In particular, Lehmann lovegrass can produce up to four times greater annual biomass
than native grasses adding significant fine-fuel in areas where it is abundant [40]. We found that
locations with high biomass mapped within the study area showed considerable overlap with exotic
grasses (Figure 15A,B). A direct comparison between principal fire management units in the Altar
Valley (n = 59) showed a significant and strong positive relationship between average unit biomass
and non-native grass cover (Figure 16, r2 = 0.68, F = 119.2, p < 0.001). Factors such as fire frequency,
precipitation, and soil differences across BANWR likely explain increased non-native grass cover
within some management units [83].
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Figure 15. Modeled (A) land cover types from WV3 imagery and (B) corresponding fine-fuel biomass
within the study areas in 2015. Grasslands highly invaded by the non-native grass species E. lehmaninana
overlapped with areas of high fine-fuel biomass accumulation. Grasslands with a greater number of
native grass species were associated with lower fine-fuel accumulations.
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Figure 16. Fine-fuels and fuel-type data compared within principal fire management units (n = 59) on
the Buenos Aires National Wildlife Refuge (BANWR) showed a strong positive relationship between
non-native grass cover and average fine-fuel biomass.
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Our efforts to distinguish between native from non-native grasses showed the highest
misclassification error in our models using leaf-on and leaf-off WV3 imagery (Table 5A,B). This was
partially a result of the low number of native grass dominated sites available for sampling and that
Lehman lovegrass has similar reflectance and phenology characteristics in comparison with native
grasses [89]. When present, native grasses frequently occurred as a mixed native and non-native grass
composition or in areas with sparse grass cover such as rocky slopes and ridgetops that were less
suitable for Lehmann lovegrass. Huang and Geiger [89] found that distinguishing Lehmann lovegrass
from native grasses required Moderate Resolution Imaging Spectroradiometer (MODIS) satellite image
VI differences obtained during anomalously wet versus normal precipitation that occurs infrequently.
As such, increased cool season moisture favoring Lehmann lovegrass greenness when native grasses
are senesced or dormant, may only occur a few times per decade [89]. Nevertheless, land cover models
sufficiently separated grasslands, shrubs, mixed grass-shrub and tree dominated vegetation important
for assigning standard fire behavior fuel models [8,25].

5. Conclusions

The increased variety of satellite and in-situ sensors available to analysts is an important means
to improve development of fine-fuel and fuel-type data. We found that, once calibrated, the field
ceptometer and LAI coupled with other simple field measurements was an efficient and accurate
method to non-destructively estimate semi-desert grassland fine-fuel biomass. Herbaceous biomass
and species composition data from plots were well suited to developing high-resolution (10 m to
30 m pixels) estimates of the amount of fine-fuel and fuel-type across the study area when combined
with multi-date WV3 or OLI satellite imagery. The presence of a red-edge band with WV3 imagery
showed some advantage over OLI imagery for generating primary cover data that improved fine-fuel
regression tree models. This suggests that other recent satellite sensors such as the European Space
Agency’s Sentinel-2 platform which contains three separate red-edge bands centered on 705 nm,
740 nm, and 783 nm wavelengths may further improve plant biomass and fine-fuel estimates for
grasslands (https://sentinel.esa.int/web/sentinel/missions/sentinel-2). Sentinel-2 is also collected
at a 5-day return interval for every location on Earth which greatly increases the temporal frequency
of imagery that is important for capturing peak green versus dormant periods that were shown as
important in our fine-fuel models. Our principal objectives were to develop the most accurate estimates
of fine-fuels and fuel-type for the study area as are feasibly possible. Thus, digital elevation data
distinguishing differences in terrain conditions and predicted herbaceous and bare ground cover were
also essential for improving fine-fuel estimates. Fine-fuels and fuel-type data illustrated important
relationships between non-native grasses and fine-fuel accumulation needed for targeting fire hazard
mitigation and activities to restore native grass species when feasible.
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